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AHSTI;AC  I

An approach is evaluated for retrieval of land surface parameters (soil moisture, vegetation

water content, and surface temperature) using satellite microwave radiometer data in the 6 to 18

GIIz frequency range. The approach is applicable to data that will be acquired by the Advanced

Microwave Scanning Radiometer (AMSR),  planned for launch on the ADEOS-11 and EOS PM-1

satellites in 1999 and 2000, respectively. The retrieval method is based on a radiative transfer

model for land-surface and atmospheric emission, with model coefficients that can be tuned over

specific calibration regions and applied globally. “1’he method uses an iterative, least squares

algorithm, based on six channels of radiometric data. Simulations using this algorithm indicate

that, for an assumed sensor noise of 0.3 K in all channels, soil moisture and vegetation water

content retrieval accuracies of 0.06 g cm-s and 0.15 kg nl-2, respectively, should be achievable in

regions of vegetation water content less than approximately 1.5 kg m-2. A surface temperature

accuracy of 2 C should be achievable, except for bare soils where discrimination between

moisture and temperature variability is difficult using this algorithm. These accuracies are for

retrievals averaged over the sensor footprint, and exclude conditions of precipitation, open water,

snow cover, frozen ground, or high topographic relief within the footprint. The algorithm has

been tested using data from the Ninlbus-7  Scanning Multichannel Microwave Radiometer

(SMMR)  for the years 1982-85, over the African Sahel, and the retrieval results compared to

output from an operational numerical weather prediction model. The retrieval algorithm is shown

to discriminate well between soil moisture, vegetation, and temperature variations, and to provide

estimates cc)nsistent with the expected accuracies. Future work will investigate possible

improvements to the algorithm using alternate formulations, possibly with fewer channels, and

will extend testing of the algorithm to other regions.
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I. IN”I’ROI)UC  [’[ON

As part of its Mission To Planet Earth (MI’PI;),  NASA plans to launch the Advanced

Microwave Scanning Radiometer (AMSR) on the Ilarth Observing System (EOS) PM-1 satellite

in late 2000. The FOS AMSR (AMSR-E) is a modified version of the AMSR instrument

designed for launch on the Japanese Advanced I~arth Observing Satellite-II (ADEOS-11)  in 1999.

The two AMSR instruments will operate in polar, sun-synchronous orbits, with equator

crossings at 10:30 am and 1:30 pm for AMSR and AMSR-E respectively. The AMSR is a

successor in technology to the Scanning Multichannel Microwave Radiometer (SMMR)  and

Special Sensor Microwave lmager  (SSM/1) instruments, first launched in 1978 and 1987

respectively, and will provide observations of variables describing the Earth’s atmosphere, ocean,

cryosphere, and land surface. Over snow-free land, it will be possible to estimate three surface

variables from AMSR data: surface soil moisture, me; vegetation water content, we; and surface

temperature, Te. Observations by AMSR of these variables will be of benefit to applications

involving surface energy and water balance, large-scale hydrologic modeling, numerical weather

prediction, climate modeling, and monitoring of floods, droughts, and land-cover change. In this

paper we describe an approach for estimating me, we, and Te from the 6 to 18 GHz AMSR

channels, and test the method using historical SMMR data.

Recent studies have shown the effects of soil moisture on the dynamics of the atmospheric

boundary layer and hence on weather and climate. Such studies have also shown the influence of

soil moisture on the feedbacks between land-surface and atmospheric processes that lead to

climate anomalies [ 1 ]-[3]. Simulations have shown that improved characterizations of surface

soil moisture, vegetation, and temperature in numerical weather-prediction models lead to

significant forecast improvements [e.g. 4]. For these reasons, the lack of a global hydrologic land-

surface observing capability has been recognized as a limitation on improved climate forecasting
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and monitoring. Soil moisture has become a kcy measurement priority of NASA’s MTPE

program [5]. AMSR measurements will contribute to such an observing capability.

The current generation of spaceborne radiometers are not optimal for land sensing in terms of

spatial resolution and frequency, especially for soil moisture sensing. The SMMR, launched on

the Nimbus-7 satellite in 1978, had a spatial resolution of -150 km at its lowest frequency of 6.6

GIIz [6]. The SSM/1,  launched in 1987, has a lowest frequency of 19.3 GI-Iz [7], at which

vegetation cover can dominate the soil moisture signal. I,ow frequencies (below -3 GI Iz) are

preferable for soil moisture sensing, since the attenuation through vegetation is less and the

sensitivity to moisture below the top centimeter of soil is greater, at lower frequencies [8].

Under low-vegetation conditions, however, the 6.6 and 10.7 GIIz channels of the SMMR

(similar to the two low-frequency AMSR channels) have adequate sensitivity to surface soil

moisture. In this paper we emphasize the use of the two low frequencies for soil moisture

sensing. We also include the 18 GIIz frequency for its anticipated additional sensitivity to low

vegetation amounts and to surface temperature. “l-he spatial resolution provided by AMSR (-70

km at 6.9 CiHz) is an improvement over the SMMR, and is reasonably matched to the grid scales

of the current global atmospheric general circulation models (-50 to 100 km). “l’he comparative

operating characteristics of the SMMR, SSM/1,  and AMSR are shown in Table 1.

AMSR measurements of surface temperature and vegetation will complement similar

measurements of these parameters obtained from optical and thermal-infrared sensors on the EOS

PM- 1 platform (i.e. MODI S and AIRS). Although passive-microwave measurements are of

lower spatial resolution than optical and infrared measurements, they are less influenced by solar

illumination, aerosols, and clouds, and are responsive to different dynamic ranges of vegetation

structure and biomass. Thus, there is potential for synergistic usc of products derived from the

AMSR, MODIS, and AIRS instruments.

Algorithms developed to retrieve land parameters from AMSR at 6 to 18 GHz  can be tested

using the historical SM MR data record since the S MM R operated at similar frequencies to
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AMSR. SSM/I data cannot be used for this purpose since the SSM/1 does not have channels near

6 and 10 GIIz.  In this paper wc focus on estimating m,, we, and 7; using the 6 to 18 GHz

channels, and test the procedure using SM MR data (available from 1979 to 1987) over the

African Sahel.

The procedure for deriving me, we, and 7: is based on a physical model of microwave

emission from a layered soil-vegetation-atmosphere medium. I’he model exhibits a nonlinear

dependence on vegetation, hence an iterative least-squares-minimization retrieval method is

employed. For satellite applications, the retrieved variables are area-averages over the footprint.

Strictly speaking, the retrievals ofm, and 7, also represent vertically-weighted averages over the

sampling depths in the soil and vegetation. Certain parameters of the physical model, such as

soil surface roughness and vegetation single-scattering albedo,  cannot be measured easily, and

hence must be estimated from physical principles or derived empirically, a-priori. These

parameters can be assigned uncertainty estimates, enabling an overall estimate to be made of the

geophysical retrieval accuracies. As the vegetation cover increases, the retrieval errors for m, and

we increase also, and for dense vegetation these variables cannot be retrieved reliably. The

retrieval algorithm identifies when the reliability thresholds have been exceeded.

Terminologies and paratneterizations  used in describing the surface soil and vegetation states

are often not well defined or consistently applied in radiative transfer and hydrometeorological

modeling. The term “soil wetness” is often used to describe the amount of soil water computed

from a meteorological land-surface model. I Iowever, the soil wetness so defined is model-

dependent, since different models can give different values of soil wetness while having similar

estimates of water and energy exchange. Also, the soil depth within which the soil wetness is

defined varies according to the model [9]. When referring to land-surface temperature, the terms

“canopy temperature”, “skin temperature”, “aerodynamic temperature”, and “radiation

temperature” may be implied, according to the context, l’he interpretation may depend on the

model being used, the viewing direction and wavelength of the sensor, and the 3-din~ensional
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characteristics of the surface [10]. Similarly, various parameters have been used to describe

vegetation state, including “biomass”, “leaf-area index” (I,AI), “normalized difference vegetation

index” (NDVI), etc. In this paper, the microwave-derived variables me, 7~, and we, are defined,

but no attempt is made here to relate these explicitly to the parameters of other sensors and

models. For synergistic studies this will have to be done, however.

]1. ~IISTORICAI ~ ]’EXSPEC’I’lVN

The potential of the 6.6 and 10.7 GIIz channels of the SMMR for soil moisture monitoring

was first investigated by Wang [11] and Njoku and Patel [12]. These studies were followed by

others [ 13]-[ 17]. S M M R data were also shown to be useful for monitoring seasonal flooding

[18], and for vegetation monitoring [19], [20]. McFarland et al. [21] and others [20], [22]

showed that SMMR and SSM/I data could be used to estimate surface temperature. The effects

of the intervening atmosphere on land-surface measurements at 37 GH z were also investigated

[23], [24]. Ferraro et al. [25], Neale et al. [26], and others, have investigated surface type

classifications obtainable using SMMR and SSM/1 data. The effects of surface heterogeneity on

passive land retrievals have been studied by Njoku  et al. [27]. In this paper we build on these

investigations by providing a method for quantitative retrieval of moisture, temperature, and

vegetation parameters over snow-free land, using an algorithm that can eventually be applied

globally for climate modeling and monitoring applications. Recent studies have also considered

approaches for assimilating satellite microwave radiances directly into predictive models of

moisture and heat flow in soils and ecosystem functioning [28], [29]. In this manner, microwave

radiative transfer and soil/vegetation heat and moisture flux algorithms can be used jointly to

retrieve higher-level products such as subsurface soil moisture and temperature profiles, and

surface heat fluxes. These approaches require significant development before they can be applied

practically on a large-scale basis.
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]]1. Al,mRrl’tlM  [) IXCKIIWON

A. Eimission  Model and Sensitivities

The retrieval algorithm for m,, w,, and 7> is based on a radiative transfer (R”l’)  model which

relates parameters describing the surface and atmosphere to the observed brightness

temperatures. l’he model represents these processes in a simplified form appropriate to the

spatial scale of the satellite footprints. I’he pararneterization  of the model is designed with the

retrieval algorithm in mind. Errors in the model approximations, and a-priori uncertainties in the

model parameters, will be reflected in the resulting retrieval errors. These errors and uncertainties

can be estimated, and their influences on retrieval error evaluated.

Various elements of the RT model used here have been reported elsewhere [8], [1 5], [30].

However, some aspects of the model are new, hence the model equations with brief descriptions

are provided here in the Appendix. We write the satellite-observed brightness temperature as:

where, the model function @i (x) relates the parameters x = { xj} of the soil-vegetation-

atmosphere medium to the brightness temperature observations, 7’Bi, at channel i. The RT model

parameters are listed in Table 2.. The parameters are grouped into two categories: (a) parameters

defining media and sensor characteristics or empirical relationships, and (b) retrievable

geophysical variables. The atmospheric variables are included in the retrievable list although the

sensitivity of brightness temperature to these variables over land, at frequencies below 37 GHz,

is too low to afford reliable retrievals. (Retrieval of water vapor and cloud liquid water by

including the 21-23 and 37 GHz frequencies may be possible over surfaces of low variability,

particularly if ancillary data are available to characterize the background surface emissivity.) The

soil and vegetation temperatures are retrieved as a single surface effective temperature, Te,

averaged over the satellite footprint. Similarly, me and w~ represent effective values averaged

over the footprint. l’he model assumes that all radiometer channels are coincident and have the
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same footprint. (This is expected to be accomplished in the AMSR case by preprocessing of the

brightness temperature data,)

Figure 1 shows the computed brightness temperatures, 7j1, at 6.6, 10.7, and 18 GHz, vertical

and horizontal polarizations, at O = 50.3° (i.e. the SMMR observing characteristics). The curves

are shown as functions of me, we, 7~, qv, and ql, for a standard atmosphere, and nominal values,

except where each variable is varied, of me = 0.1 g cm-s, we = O kg m-z, 7~ == 30 C, qv == 2.5 cm,

and ql = O mm. The sensitivity of brightness temperature to moisture and vegetation is greater at

H than at V polarization, while the converse is true for temperature. The sensitivity to moisture

decreases, while the sensitivity to vegetation increases, with increasing frequency. The

sensitivity decreases with increasing vegetation, and there is little sensitivity at vegetation water

contents greater than -1.5 kg m-’2 even at 6.6 GIIz (Figure l(b)). Thus, it is unlikely that

retrievals of soil moisture will be feasible at vegetation amounts beyond this threshold. The

different sensitivity of brightness temperature to m,, we, and 7’,, as a function of frequency and

polarization, is the basis for the ability to independently retrieve these parameters using a

multichannel algorithm. At these frequencies, the sensitivity to cloud liquid water is minimal, as

is also the case with water vapor, except at the 181 I channel.

The sensitivities can be computed explicitly. It is convenient to normalize the sensitivities

such that the sensitivity, Si} of brightness temperature at channel i to geophysical parameter Xj is

expressed as:

(2)

where, Xj are typical parameter dynamic ranges, and XO are baseline values of the parameters, x,

at which the sensitivities are evaluated. Normalized sensitivities indicate more clearly the relative

magnitudes of the sensitivities to the different parametrs,  in Kelvins. The sensitivities are shown

in Table 3 for horizontal and vertical polarizations at 6.6 GHz for two cases-–for bare soil and
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for vegetation water content of 1.5 kg m-z (spanning the range of vegetation conditions under

which soil moisture retrievals using SMMR or AMSR are likely to be feasible). The

sensitivities to moisture and vegetation are clearly much reduced for the higher vegetation level,

although the sensitivity to surface temperature remains high. Thus, accurate retrieval of surface

temperature can be achieved regardless of vegetation cover, and only the interpretation of the

surface temperature (i.e. soil or vegetation) will change. Sensitivities to other variables (e.g

atmospheric water vapor and liquid water) and model parameters (e.g. uncertainties in roughness

or vegetation albedos)  are typically an order of magnitude or so less than to the three main

variables (me, we, and 7e), and hence are not dominant factors in the retrievals.

B. Retrieval Procedure

Retrievals of land surface parameters using passive microwaves have, in the past, used mainly

surface classification and linear-regression methods. Nonlinear algorithms (iterative and neural-

network) have also been used, particularly to improve retrievals where the physics of the

radiative-transfer and interaction processes are nonlinear [32], [33]. 13ayesian  estimation

techniques have also been investigated to include, optimally, a-priori information on sensor noise,

model uncertainties, probability distributions of the parameters being estimated, and ancillary

data from ground truth or other sensors [34]. In this paper we use an iterative least-squares

minimization algorithm.

The algorithm retrieves, simultaneously, M geophysical variables (i = 1 to M) from

measurements at N brightness temperature channels (i = 1 to N), where N should be greater than

h4 for stable retrievals. Initially, to evaluate the procedure, we have used N = 6, which for the

SMMR  case includes the six lowest-frequency channels: 6.6H, 6.6V, 10.7H, 10.7V, 18H, and

18V. The three primary variables, m,, w,, and T,, are included in the retrieval set, and also

precipitable  water, q,,, i.e. M = 4. (The inclusion ofqv is for illustration only, and is intended to

show the difficulty of retrieving this parameter over kind at low frequencies. ) The procedure

finds values for the set of variables x = {m,, we, 1~,, q,, } that minimize ~z, i.e. the weighted-sum



of squared di f’ferences between observed, Tf~~, and computed, @i (x), brightness temperatures,

where:

(3)

The efficient Levenberg-Marquardt algorithm is used to search for the set of variables, x*,

that minimizes the X2 [35]. At each retrieval point, the algorithm starts with a-priori values, XO,

of the geophysical variables to be retrieved, and adjusts these iterative y until convergence to the

minimum # is achieved within

standard deviation in channel i.

described in the Appendix.

specified criteria, The CJi represents the measurement noise

The model parameter values used in computing @i (x) are as

The model, @i (x), is mathematically well-behaved, hence convergence of the retrieval

algorithm is normally straightforward, except where the model cannot adequately represent the

surface emission (e.g. where snow or open water occur in the footprint), or where the

sensitivities to the parameters are too low. In such cases the parameter

algorithm are unreliable, as indicated by high values of the minimized ~z.

C. Retrieval Simulations

values retrieved by the

Simulations have been performed to estimate the accuracy of the retrieval algorithm in the

presence of sensor noise. The variables to be estimated, x == {m,, w,, Te, qv} were simulated as

sets of 200 uniform random variables (i.e. number of realizations, Mr  = 200) spanning the dynamic

ranges: me == 0.03 to 0.35 g cm-s; we = O to 1.5 kg m-z; 7; = O to 40 “C; and qv = 1 to 5 cm.

From these distributions, model brightness temperatures, 7’Bi = @i(x), were computed for the six

SMMR channels to be used in the retrieval. To these brightness temperatures, gaussian random

noise of AT = 0.3 K ( 1a)  was added to simulate noisy SMMR observations. l’he retrieval

algorithm was then applied to these simulated observations, Tfl~,  and parameter estimates x*

obtained. Starting values of XO = {0.05, O, 0, 1 } were used, and a maximum of Niler = 10
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iterations was allowed, which was found to be suftlcicnt  for convergence. Fig 2 shows

scatterplots of the ‘retrieved’ versus ‘true’ parameters obtained in this manner for one set of YZr =

200 realizations, with AT= 0.3 K. Precipitable  water is not well retrieved, as expected, although

there is some sensitivity. Negative retrieved values ofqv are set to zero in the algorithm. Figure

3 shows histograms of the retrieval errors, E = X* - x, for the same set of realizations and noise

A 7’ value as Figure  2. (The horizontal scales of the histograms in Figure 3 are normalized to the

parameter ranges.) The means and standard deviations of the simulated retrieval errors, E, are

given in Table 4. The values shown in Table 4 are averages over 10 different sets (n, = 200) of

AT= 0.3 K sensor noise realizations, to improve the reliability of the retrieval error estimates.

Also shown in Table 4 are the retrieval error estimates for an increased sensor noise of A T = 0.5

K. The means of the retrieval errors are not significantly different from zero, indicating that the

retrieval algorithm is unbiased. The standard deviations of the retrieval errors for AT== 0.3 K are

approximately 60°/0 less than for AT= 0.5 K, as expected based on the ratio between the sensor

noise values.

Figure 2 and Table 4 provide statistics for the simulated retrievals over the full dynamic

ranges of all variables. To illustrate how the retrieval accuracy varies as a function of each

variable, we compute the retrievals in similar fashion to the above, for A T = 0.3 K, but this time

each of the variables in turn is varied discretely in 20 steps over its range, while the other

variables are varied randomly over their ranges. l’he results are shown in Figure 4. Panels (a)

through (d) show the soil moisture retrieval error means and standard deviations as functions of

me, w,, T,, and q, respectively. Similarly, panels (e) through (h), (i) through (l), and (m) through

(p) show the retrieval errors for vegetation water content, surface temperature, and precipitable

water. The solid lines are the means, and the dashed lines the standard deviations, of the errors.

In general, the mean errors are all close to zero indicating that the retrievals are unbiased over the

full ranges of variability. The slight wiggliness  of the lines is the statistical uncertainty of

estimating the mean errors using nr = 200 realizations. (l’his uncertainty decreases as n,

increases. Using a larger  value of nr does not provide additional insight into the main results of
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Figure 4 however.)

sensitive to 1~ and

Within the surface

As shown in Figure 4, the retrieval error standard deviations are not very

qv, except for Cq which has a broad peak with a maximum near Yi = 14 C.

temperature range corresponding to this peak, for the conditions of our

simulation, the background surface brightness temperature is similar to the tropospheric water

vapor emitting temperature, and hence there is little sensitivity of the satellite-observed

brightness temperature to the water vapor. This points out the difficulty of retrieving water

vapor (or cloud liquid water) over land, except where the land brightness temperature is much

lower, or higher than the tropospheric water vapor (or cloud) emitting temperature.

A significant feature of Figure 4 is the increase in error standard deviations ~.l and EM, with

increase in vegetation water content (panels (b) and (f)). This is expected, due to the masking of

the underlying soil, and the saturation of vegetation emission, at the higher vegetation amounts, at

frequencies of 6.6 GHz and above. There is little potential for using the SMMR (or AMSR) for

retrieval of me or we at values of we > -1.5 kg m-2. At vegetation amounts below --0.2 kg m-2

(approaching bare soil) the surface temperature retrieval error, El; increases markedly (panel (j).

For bare soils, the algorithm has difficulty discriminating between the effects of increasing T, and

decreasing me on the brightness temperature (note the corresponding increase in En, in panel (b)).

This implies that for bare soils, surface temperature may not be retrievable accurately using

microwave data alone, and ancillary surface temperature information from other sources (satellite

or in situ) may be useful in improving the retrievals of soil moisture over bare soils.

IV. AIv%IcAI[oN ‘[o SMMR DATA

The simulation results (Figure 4) indicate that, even accounting for modeling errors (which we

have not simulated here), retrieval accuracies for me, \4,, and T, of better than 0.06 g cm-s, 0.1 kg

m-z, and 2 C, respectively, should be feasible using satellite instruments such as the S MMR and

AMSR over a wide range of conditions, provided the footprint-averaged vegetation water content

is less than about 1.5 kg m-2. No externally-provided data from other sensors or model-generated
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output, such as surface temperature or atmospheric moisture data, are assumed. ‘l’he idealized

1<2’ model used in the simulations does not account for nonlinearities  caused by sub-pixel surface

heterogeneity, variability in surface topography and roughness, or uncertainties in model

parameters. Thus,  itisinlportant  totestthc  retrieval algorithnl  using actllal  satellite data, under

conditions in which the performance can be readily assessed. For this purpose, we have run the

algorithm using four years of Ninlbus-7  SMMR data over a 4° x 10° latitude-longitude region of

the African Sahel, between 12° to 16“N, and 0° to 10“E, Figure 5. In this region there are strong

seasonal signals of moisture, vegetation, and temperature, related to the precipitation cycle

between the rainy and dry seasons. The region is devoid of large-scale topography, and the

surface can be viewed as relatively homogeneous at the large scale (-50-150 km) of the SMMR

footprints. The region is a fragile ecosystem, and hence is also of scientific and sociological

interest due to the ongoing threat of drought and desertification.

The SMMR data are derived from the reprocessed SMMR brightness temperature data set

available from the NSIDC DAAC [36]. For this study, these data have been binned separately

for daytime and nighttime passes (ascending and descending orbits, respectively) onto 6-day and

monthly, 1/2° x 1/2° Iat-lon grids, for ease of data handling and comparison with other data sets.

The retrieval algorithm was applied to the monthly, daytime binned data; thus the geophysical

parameter estimates are also at the monthly, 1 /2° grid scale. Retrievals were done on the

monthly, 1/2° grid data to expedite analysis over the 4-year time span for this study, however

future retrievals will be performed on the swath data prior to binning, to avoid the temporal and

spatial averaging that occurs using binned data. Daytime data were used since there are extensive

gaps in the nighttime data near the equator due to the a]ternate-day  on-off operation of the sensor

(the on-off switching was done at the descending-node equator crossing near local midnight).

A. Model Calibration

Uncertainty in the absolute calibration of the SMMR brightness temperatures, and in some of

the RT model parameters, requires that the retrieval model first be ‘calibrated’ to the S MMR
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observations. This is done by selecting two homogeneous sites, one in the desert and one in

tropical forest, where offsets in the brightness temperatures at the various channels can be

determined and the model parameters, h, Q, and @P, fine-tuned. l’hese sites are marked on Figure

5 as points ‘A’ and ‘13’, respectively. Since the roughness characteristics of desert, and the single

scattering albedo  of tropical forest, are not expected to change significantly with time, the

parameters, h, Q, and OP, are determined once, and then held constant in the temporal application

of the algorithm. They were also held constant spatially in this study. In future work, the

spatial dependence of these parameters will be investigated to improve the algorithm

performance.

Desert:

Over the desert site, with an assumption of no vegetation (rC+O), the RT model equations (see

Appendix) can be rearranged to express the soil reflectivity as a function of the observed

brightness temperature, surface temperature, and atmospheric absorption and emission:

TBP - Tu -7: exp(-~.)
—— ..—

‘SP =
(4)

exp(-z.)  ( Td -7: + 7’+ exp(-t.)]

Climatological  estimates of q., Tae, and T,, and S M M R brightness temperatures, were used to

evaluate rsh and rSV at the desert site (assuming cloud-free conditions) according to Equation (4).

lJsing  Equations (A. 1 ), (A.2), (A. 12), and (A. 13), and assuming dielectric properties of a dry,

sandy soil, values for h and Q were obtained for each frequency. These are given in Table 5.

Forest:

Over the forest site, the high vegetation opacity masks the underlying soil. Using the limit

-rC+large,  we can rearrange the RT model equations to express the vegetation single-scattering

albedo  as a function of the observed brightness temperature, surface temperature, and

atmospheric absorption and emission:
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(5)

Using climatological  and SMMR data over the forest site, as for the desert site, we obtain values

for twP at each frequency and polarization as given in Table 5. Cloud effects are ignored in this

calibration, since they are expected to be small at 6 to 18 GIIz according to Figure 1.

The values of h and Q obtained are consistent with values obtained from previous ground-

based field experiments [37], [38]. Similarly, the values obtained for COk and ~. are physically

reasonable and within their expected ranges [39]. It should be remembered, however, that by

matching the RT model to the SMMR observations at the calibration sites we have essentially

lumped any brightness temperature calibration offsets into the derived values of h, Q, and OP. It

is difficult to distinguish radiometer absolute calibration offsets from model offsets without more

extensive analysis, and for our purposes here it is not necessary to do so. Fine-tuning a global

algorithm will require this to be done, however. obtaining physically reasonable values for the

parameters in Table 5 gives credence to the RT mode], and also to the good relative calibration of

the SMMR  data. In future investigations this calibration procedure will be performed using an

optimum statistical method, using globally-distributed sites and available in-situ and land-

atmosphere model output data instead of climatology. Fine-tuning of the vegetation opacity

coefllcient,  b, can also be done using the SMMR clata  by estimation over large-area homogeneous

sites of known biomass. Instrumented sites of this kind are not currently available, however;

hence in this study we use the form for b derived from ground-based measurements, as described

in the Appendix.

B. Retrieval Results

Figure 6(a) shows a time-series of the SMMR-derived geophysical parameters, retrieved on

the 1/2° gri(i, and further averaged over the region shown in Figure 5. Superimposed on the plot

is the precipitation rate, averaged over the same region, obtained from an operational forecast

model product of the National Centers for Environmental Prediction (NCEP). Figure 6(b) shows
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comparisons between the SMMR retrievals of mt, and 7~ and the NCfiP model outputs of soil

wetness and surface temperature. “l’he variables in I~igure 6 have been scaled as indicated, to have

similar dynamic ranges on the plots. The NCEP model output products are part of a 13-year

(1982-94) operational forecast model reanalysis project [40]. The products are generated as

outputs of a 6-hourly data-assimilation and forecast cycle, and the products shown here were

obtained from NCEFI as monthly-averages on a 2.5° x 2.5° grid, and then averaged over the area

shown in Figure 5. The model output data cannot be considered as “truth”, but they represent

self-consistency in the forecast model as related to the in-situ data used in the most recent (6-

hourly) data assimilation. Thus, the data are valuable for comparing against the temporal trends

of the SMMR retrievals.

Figure 6(b) clearly demonstrates the ability to retrieve soil moisture and temperature from the

SMMR with the correct seasonal cycle. It is difficult to compare quantitatively the absolute

values of the SMMR retrievals and the NCEP data, since the NCEP soil wetness represents an

average value over the top 10 cm, as compared to the top few mm for the SM M R. Thus, the

SMMR derived values of soil moisture are more than a factor of four lower than the NCEP

values. Also, the NCEP surface temperature is a skin surface value, as compared to the top few

cm for the SMMR. In addition, the SMMR data are samples near 12 noon local time, while the

NCEP data are averages over the diurnal cycle. It is interesting to note the dip in the SMMR-

retrieved surface temperatures (Figure 6(a)) that appear to coincide with the peaks of the NCEP

rain estimates. These dips are less pronounced in the NCEP temperatures (Figure 6(b)), but are

visible as plateaus on the decreasing side of the curves. Normally, under moist conditions the soil

temperature is cooler than for a dry soil, due to the increased evaporation from the soil and the

soil thermal inertia. This cooling effect is more pronounced in the SMM R data sampled near

local noon than for the diurnally-averaged NCEP data.

Figure 7 shows scatterplots  of the SMMR-derived and NCEP model output variables shown

in Figure 6(b). The best fit regression lines arc also shown. The standard deviation of the
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temperature comparisons in Figure 6(b) is 2.7 C. It must be remembered that different  quantities

arc being compared between the remotely-sensed and model output data, and the data represent

monthly averages, over a relatively large 4° x 10° area. Nevertheless, the level of agreement is

very good. Better agreement is to be expected when the comparisons can be carried out at shorter

time scales, such that the moisture and temperature variations can be tracked more accurately,

and where the accuracy of the comparison data can be better verified. The Sahel is a region where

the accuracy of the operational forecast models is suspect, due to the sparseness of in situ

meteorological data for initializing the forecasts.

5. ]) ISCIJSSION

In this study we have shown via simulatiorls that surface soil moisture, vegetation water

content, and surface temperature are retrievable with useful accuracies using passive microwave

measurements at 6 to 18 GHz. Several caveats in the physical model have been pointed out,

however, that may decrease the retrieval accuracies in practical applications. The same algorithm

as used in the simulations has been applied to historical SMMR data, to investigate the

retrievability of these variables using actual satellite data in a region of low vegetation.

Comparisons of the SMMR  retrievals with forecast model reanalysis data, over a region in the

African Sahel, on a monthly time scale, are very encouraging. Subsequent work is required to

extend these results to other regions, and to validate the retrievals more quantitatively. This can

be done in conjunction with some of the large-scale data production and validation exercises

currently underway for land-atmosphere interaction modeling [e.g. 41]. Trade-offs in retrieval

algorithm design also need to be investigated. In this study, the 18 GIIz channels were included

in the algorithm for their anticipated greater sensitivity to vegetation at low levels, and for better

temperature sensitivity and stability. However, the 6.6 and 10.7 GIIz channels may suffice for

this purpose, and the 18 GIIz channels may in fact add more noise than information over

heterogeneous regions, since the footprint size at 18 Gt Iz is a factor of 2 to 3 smaller than at 6.6
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GHz. (Pre-processing of the brightness tenlperaturcs tothesan~c  footprint sizes helps reduce

this problem.) The use of algorithms based on brightness temperature polarization ratios as a

means for removing surface temperature dependence also needs to be investigated.

6. A P P E N D I X: MICRC)WAVE  EMISSION MODEL

A. Bare Soils

For a homogeneous soil with a smooth surface, the reflectivities  at vertical and horizontal

polarizations, r.v and r~h, are given by the Fresncl expressions:

‘%  =

_—— —
&,cosO - ~- sin20 2

E, COS6 + <Er - Sh128

I Cose - f&: -sii~e 12
ro~,

_—— -= .—

cost) + ~E,-- sin20

where, O is the incidence angle (relative to the surface normal),

( A l )

(A.2)

and &r is the complex dielectric

constant of the soil which depends primarily on the soil moisture content, m. The soil is

considered as a mixture of soil particles and pore spaces filled with air and water [42], [43]. The

dielectric model used here is that of Dobson et al. [43], and requires the specification of the sand

and clay mass fractionss and c (which describe the soil texture) and the soil bulk density pb. In

this study, a value ofp~ = 1.4 g cm-s is used, ands and c are given values typical of a sandy soil.

For global applications, a soils database can be used to estimate the large-scale soil texture [e.g.

44]. The smooth-surface emissivity,  eo[,, is related to the reflectivity, roP, by reciprocity:

co,, = 1- rOl) (A.3)

where, the subscript denotes either vertical or horizontal polarization @ = v or h). For a soil

with uniform temperature, T~, the soil brightness temperature, T6~P, is given by:
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h,, = %,, ?, (A.4)

Under natural conditions, the soil temperature has a nonuniform, time-varying, vertical profile

determined by the net heat flux at the surface and the soil thermal properties. The moisture

profile is also nonuniform and time-varying, determined pritnarily  by the net moisture flux at the

surface (precipitation minus evaporation) and the hydraulic properties of the soil. The soil

temperature and moisture profile dynamics are coupled, since soil thermal properties are

moisture dependent. (Since the soil heat and moisture flux models provide time-dependent

information and constraints on the variability of the moisture and temperature profiles, these

models and information can potentially be incorporated into the retrieval algorithms to provide

improved soil moisture and temperature estimates.)

For nonuniform temperature and moisture profiles, the dependence of the soil brightness

temperature, Tb~P, on subsurface variability of temperature, 7’Jz), and moisture, m(z), is

expressed as:

1.
0

Y’b ~i, =
7’S (2) E;, {s. (z)} dz (A.5)

where, z is the vertical distance above the surface (positive in the upward direction). The form of

Fl, {G (z)} can be detertnined accurately using a coherent radiative transfer approach [45].

Approximate Form:

An approximate form for FP {E, (z)}, valid when the moisture profile does not vary rapidly

over the depth of a wavelength in the medium (the wavelength in the medium varies with

dielectric constant and hence also with depth), is obtainable using an incoherent radiative transfer

approach, which leads to an expression equivalent to (A.5):



\

(1

7;.,, = 7;(Z) F’N[,  {Er (z)} L/z (A.7)
-00

where, rO~) now denotes the Fresnel reflectivity of a homogeneous soil of dielectric constant E,(O),

T,, is the soil “effective temperature”, and ~N,, { E~z ) } is an approximation of F“ {E,(z)},

normalized to an integral of unity:

u )o

~N[){ G(Z ) } = a(z) Cxp - @Z ‘) dz’
z

(A.8)

and where A is the wavelength in air. Equations (A.6)–(A.9) can be derived directly as a first-

order approximation to Equation (A.5), and express the fact that, to first order, the reflectivity

(and emissivity) of a soil is determined by the dielectric constant (and hence the soil moisture) at

the soil surface (z = O), while the brightness temperature is affected by the subsurface

temperature and moisture profiles. l’his approximation is convenient, since Equation (A.6) has a

simple form equivalent to Equation (A.4). As the wavelength increases, the approximation

becomes less accurate since the emissivity becomes dependent not j ust on the surface dielectric

constant but on the subsurface gradient of the dielectric constant. However, it is a valid

approximation provided the emissivity is considered to be representative of the average or

“effective” moisture, ine, within a top soil layer of depth dn,, the “moisture sensing depth”,

where dot depends on wavelength. Simulations have shown [46] that dm~ is about a tenth of a

wavelength in the medium. Thus, dn, is a variable that itself depends on the soil moisture

content. The longest SMMR  wavelength is 4.3 cm, and for a dry soil the wavelength in the

medium will be about half this value. Thus, we find for SMMR (or AMSR) that d,,l <2  mm.

For uniform soil moisture (i.e. uniform dielectric constant), and nadir-viewing, Fiv,, ( Eiz ) }

takes the simple form:
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Ev,){fxz)l  = acxp(az) (A.1O)

where n” is the imaginary part of the refractive index (square root of the dielectric constant), i.e.

n “  = Inz {f&;}. The “temperature sensing depth”, d, = a -1, is defined as the depth of the surface

layer from which -63Y0 of the emitted radiation originates. Alternatively, d~ is the distance in the

medium over which the intensity of transmitted radiation decreases by a factor of e- I = 0.368 (for

a medium of uniform temperature and moisture), thus dl is also commonly referred to as the

“penetration depth” in the medium. In summary, the sensing depths dm, and dl define the

approximate soil depths over which the soil moisture influences the emissivity, and the soil

moisture and temperature together influence the effective temperature, respectively. These

parameters are useful in describing the characteristics of microwave emission from soils.

B. Rough Surface

The expressions for reflectivity (Equations (A. 1) and (A.2)) must be modified for rough surfaces,

to take into account the effects of surface scattering. “1’heoretical  expressions for reflectivity have

been developed using statistical parameters such as height standard deviation and horizontal

correlation length to characterize the surface [4’7]. Although these provide insight into the

scattering mechanisms, the expressions are not easy to apply in practice since they require

knowledge c)f the soil surface height and slope statistics, and are cornputationally  intensive.

A simpler, semi-empirical formulation was proposed [37] which also uses two parameters to

characterize the surface: a height parameter h (which is related to the height standard deviation),

and a polarization mixing parameter Q. In this formulation, the rough surface reflectivity, r~P, is

related to that of a smooth soil, rOP, by:

r~V = [(1 - Q) rO,, -t Q ro,, ] exp (-h) (A.12)
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, .

r~}j = [ (1 - Q) rO), + Q rOv ] exp (-h)

The available experimental database is too limited to derive reliable expressions

and viewing angle dependence of h and Q. F’or analysis of data at 1.4 GIIz,

(A.13)

for the frequency

a value of zero is

often assigned to Q, and roughness is expressed by a value between O and 0.3 for h [48]. This

formulation cannot represent fully the varieties of roughness present in nature, but captures in

simplified form, and with few parameters, the major phenomenological  and observable roughness

effects on microwave brightness. In the retrieval simulations (Section 111.C) we set h = 0.1, and

Q = O. In the SMMR retrievals (Section IV), the parameters h and Q arq estimated as calibration

parameters. With these modifications for

temperature, from Equation (A.6), becomes:

Tb~[, =

the surface reflectivity, the surface brightness

(1 - r~,,)  T$e (A.14)

C. Vegetation

Vegetation is represented as a single-scattering layer above a rough soil. The soil moisture

and temperature may vary with depth. However, the soil characteristics—texture, hydraulic and

thermal properties, etc.––are considered uniform with depth. The brightness temperature at the

top of the vegetation layer TbP can be written as a function of soil brightness temperature Tb~P,

soil reflectivity r~P, vegetation opacity G, vegetation single-scattering albedo  COl~, and vegetation

effective temperature Tee, as [15], [30]:

TbP = TbsP exp(-r~) + Tce ( 1- ~,) [1 - exp(-k)] [1 + r~P exp(-~~)] (A.15)

The reflectivity rP of the two-layer soil/vegetation surface is a function of the soil reflectivity r~P,

and vegetation opacity rC:

rP = r~P exp (-2rC) (A.16)

The tertn “effective temperature” for soil and vegetation emphasizes that when the physical

temperatures of the media are nonuniform the effective temperatures in the radiative transfer
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expressions are weighted means of the actual tcmpcraturcs. For our retrieval model we assume

for simplicity that the medium is homogeneous with temperature 7;, (so that 7\P = 7\., = 7’,), and

Equations (A. 14) and (A. 15) are combined to give:

Tb = Te ( (1 - r,,, ) exp(-~C)  + (1 - (q)) [1 - exp(-~C)]  [1 + r.,, exp(-zC)]  }[) (A.17)

In Equation (A. 17) the single scattering albedo has a polarization dependence since the

scattering depends on the relative orientations of leaves, stalks, and branches within the

vegetation volume [49]. The opacity ~C may also exhibit a polarization dependence, but there is

little evidence to show that this is of comparable significance to the other modeled effects. The

dependence of ZC on vegetation columnar water content WC, follows an approximately linear

relationship which may be written as:

Tc  =  b  M’c 1 cOse (A.18)

The COSO factor accounts for the slant observation path through the vegetation, and b is a

parameter that depends weakly on vegetation type at low frequencies. Experimental data

indicates that b is approximately proportional to frequency and has a value of -0.1 at 1.4 GHz

[50]. Recent studies indicate, however, that as frequency increases the frequency dependence of

b decreases, and its dependence

vegetation type will most likely

The single-scattering albedo @P

on canopy structure increases [51], [52]. Thus, information on

be necessary to calibrate the parameter b for global applications.

may also exhibit a dependence on vegetation water content, but

the effect of this on brightness temperature is expected to be small compared to the effect on ~C

and is not modeled. In the retrieval simulations (Section 111. C), O.)P is set equal to zero, but it is

estimated as a calibration parameter in the SMMR retrievals (Section IV).

Heterogeneity:

For a heterogeneous scene, Equation (A. 14) must be interpreted in the sense that the

parameters and terms represent area-weighted averages over the scene components within the

observed footprint. The footprint spatial dimension is defined by the antenna pattern. If we

23



consider a simple representation in which the antenna pattern is constant within the footprint

area, and zero outside, then the observed brightness temperature 7i is an area-average of the

component brightness temperatures 76j within the footprint, i.e.

(A.19)

where,~  are the fractional coverages  of N distinct surface types within the footprint (thef sum

to unity).

An analysis has been done [27] to investigate the differences between estimates of area-

averaged geophysical variables retrieved from area-averaged brightnesses  T’b, and direct area-

averages of the geophysical variables over the footprint. These differences are caused by

nonlinearities  in the microwave model, such as caused by vegetation. Simulations show that the

differences are small, except in situations where large contrasts occur within the footprint

between roughly equal fractions of bare soil and dense vegetation. Such cases should be identified

and interpreted carefully in the retrievals. In our retrieval model we assume that

homogeneously distributed over the footprint. Thus, in Equation (A. 18) the

content is understood to be an “effective” value, we, averaged over the footprint.

D. Atmosphere

the vegetation is

vegetation water

The microwave brightness temperature, 7~P, observed by a spaceborne radiometer above the

atmosphere is:

TBP = Tu + exp(-ta) [T+, + r,, { T,I + T~kY exp(-%) } 1 (A.20)

where, Tu and Td are the upwelling  and downwelling  atmospheric radiation, 7~kv is the space

background brightness (2.7 K), Ta is the atmospheric opacity, rP is the surface reflectivity, and

TbP is the surface brightness temperature (Equation (A. 17)). For low atmospheric absorption (as
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is the case at 6 to 18 GI [z), 7;, and TJ can be expressed using the effective radiating temperature

approximation:

where, TQ~ is the weighted-mean temperature of the microwave-absorbing region of the

atmosphere. Ta. is frequency dependent, and depends also on the vertical distributions of

atmospheric temperature, humidity, and liquid water. The dependence of T.e on atmospheric

profile variability is small, and Tde may be expressed simply as a function of the surface air

temperature Td, and a frequency-dependent offset 67::

Values for 3Ta are obtained from calculations using model or clirnatological atmospheric data

[40], [53].

The opacity r. along the slant-range atmospheric path is dependent on the viewing angle O

and the vertical-column amounts of water vapor q., and cloud liquid water ql, and can be written

(for a plane parallel atmosphere) as:

z-a = (To+ uvqk!+ci/q/)/cose (A.23)

where, TO is the nadir oxygen opacity, and av and a~ are the water vapor and cloud liquid water

nadir opacity coefficients, respectively. Values of these parameters are derived from the standard

equations of gaseous and water-droplet absorption in the atmosphere (Rayleigh  absorption is

assumed for the cloud droplets).

E. Summary

In the above discussion we have described how, in order to reduce the parametrization of the

microwave model to a convenient set of three dominant surface variables, we have assumed

homogeneous conditions such that the retrieved parameters represent effective values averaged
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over the radiometer footprint. Information on sub-footprint variability is not obtainable from the

footprint-averaged retrievals. The retrieved variables are thus defined as follows:

m. : Area-averaged mean moisture in the top few mm of soil.

we : Area-averaged water content in the vertical column of vegetation overlying the soil.

T. : Area-averaged mean microwave radiating temperature of the surface.

This work was carried out at the Jet Propulsion Laboratory, California Institute of

Technology, under contract to the National Aeronautics and Space Administration.
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Table 1: Comparative operating characteristics of SMMR, SSM/1,  and AMSR

Parameter SMMR SSMII AMSR-E
(Nimbus-7) (DMSP) (EOS PM-1)

Frequencies (GHz) 6.6, 10.7, 18,21,37 19.3,22 .3,37,85.5 6.9, 10.7, 18.7,23.8,
36.5,89

Altitude (km) 955 860 705

Antenna size (m) 0.79 0.6 1.6

Incidence angle (deg) 50.3 53.1 55

Footprint size (km)
at 6.6 GHz 95 X 148 NIA 43 x 75
at 37 GHz 18x27 28 X 37 8 x 1 4

Swath width (km) 780 “ 1400 1445

Launch date (1978—No longer (1 987—Series in 2000
operating) orbit)

.
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Table 2:

Parameter

‘a) Media & Sensor Parameters

Atmosphere:
T*
a v, al
8T0

Vegetation:
cop
b

Soil:
h, Q
Pb
s, c

Sensor:
o
v
p

(b) Media Variables

Atmosphere:
9V
91
Ta.

Land Surface:
m ~

we

T,

Parameters of the Microwave Model

Description

Oxygen nadir opacity
Water vapor and liquid opacity coefficients
Lapse-rate temperature differential (K)

Single scattering albedo
Opacity coefficient

Roughness coefficients
Bulk density (g cm-3)
Sand and clay mass fractions

Viewing angle (deg)
Frequency (GHz)
Polarization

Precipitable  water (cm)
Cloud liquid water path (mm)
Surface air temperature (K)

Surface soil moisture (g cm-3)
Vegetation water content (kg m-2)
Surface temperature (K)
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Table 3: Normalized sensitivities at 6.6 GHz 11 and V polarizations, t? = 50.3°, for given
parameter ranges &, and baseline values XOJ

— ——. — .—

Parameter Range Baseline Sensitivity, H Sensitivity, V

(~) (X~j) S’ij (K) S ij (K)
— .——

(a) Vegetation baseline = O kg m-z (bare soil):

Soil moisture (g cm-3)

Surface temperature (“C)

Vegetation water (kg m-2)

Atmos. Water Vapor (mm)

(a) Vegetation baseline = 1.5 kg m-2:

Soil moisture (g cm-3)

Surface temperature (“C)

Vegetation water (kg m-z)

Atmos. Water Vapor (mm)

0.32

40

1.5

5

0.32

40

1.5

5

0.15

20

0

2.5

0.15

20

1,5

2.5

95.5

25.1

211.3

1.3

8.5

22.0

10.9

0.12

60.1

35.7

28.1

0.18

5.3

20.6

1.2

0.02
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Table 4: Means and standard deviations of simulated retrieval errors for me, w,,, Tp, and qv, for
two cases of sensor noise: (a) AT= 0.3 K; (b) AT= 0.5 K. Values are averages over
10 sets ofn, = 200 sensor noise realizations.

Variable

(a) AT=: 0.3 K

m~ (g cm-3)

w. (kg m-2)

T, (C)

9. (cm)

(b) AT= O.5K

me (g cm-3)

we (kg m-2)

T, (C)

9V (cm)

Mean Error

-2.9 X 10-4

4.8 X 104

-0.034

-0.039

3.8 X 104

-1.3X 10-3

-0.028

0.11

Standard Deviation of
Error

0.018

0.029

0.80

1.46

0.028

0.051

1.24

1.92

Table 5: Model parameters, h, Q, and COP (horizontal and vertical polarizations) derived over the
desert and forest calibration sites.
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Figure 1: Elrightness temperatures computed at the SMMR frequencies (6.6, 10.7, and 18 GHz;
V and H polarizations) and viewing ang,le  (0 = 50.30), as functions of: (a) soil
moisture, we; (b) vegetation water content, we; (c) surface temperature, Te; (d)
precipitable  water, q,,; and (e) cloud liquid water path, q~.

Figure 2: Scatterplots  of simulated ‘retrieved’ versus ‘true’ parameters for one set of realizations
n, = 200, and sensor noise A T = 0.3 K. Retrieved parameters are asterisked. (a) Soil
moisture; (b) Vegetation water content; (c) Surface temperature; (cl) Precipitable
water.

Figure 3: Histograms of the simulated retrieval errors (’retrieved’ minus ‘true’) for the same
realizations and sensor noise as in Figure 2. (a) Soil moisture; (b) Vegetation water
content; (c) Surface temperature; (d) Precipitable  water. The horizontal axes of the
histograms are normalized to the parameter ranges: Anze = *O. 15 g crn-~;  Awe = tO.75
kg m-z; AT, = &20 C; AqV = A2.5 Cm.

Figure 4: Simulated retrieval errors s,,,, cW,, &7, and ST for soil moisture, vegetation water
content, surface temperature, and precipitable  water, respectively, as functions of the
‘true’ values me, we, Te, and qp. Solid lines are the mean errors, and dashed lines are
the error standard deviations. Instrument noise of AT= 0.3 K is assumed. (See text
for discussion.)

Figure 5: Rectangular area is shown over which retrievals using SMMR data and NCEP model
output data were averaged for the comparisons shown in Figure 6. Also shown are the
locations: A - Desert, and B - Forest, that were used as calibration sites for the SMMR
retrieval algorithm.

Figure 6: Comparisons between SMMR retrievals and NCEP model output data, averaged over
the region shown in Figure 5, for the years 1982 through 1985. (a) SMMR retrievals
of soil moisture, me, vegetation water content, we, and surface temperature, Te, and
NCEP model-derived precipitation rate, P. (b) SMMR retrievals of me and T e

compared against NCEP-derived  surfiace soil moisture, Soilw, and surface temperature,
Tsfc. The units have been scaled as indicated for convenience.

Figure 7: ScatterPlots of SMMR-derived  versus NCEP model output variables: (a) me (SMMR)
vs. Soihv (NCEP); (b) Te (SMMR)  vs. Tsfc (NCEP). The best fit regression lines are
shown dotted.
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